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Stability of preferable structures for a hydrophobic-polar model of protein folding

M. R. Ejtehadi,1,2,* N. Hamedani,1 H. Seyed-Allaei,1 V. Shahrezaei,1 and M. Yahyanejad1
1Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran

2Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-5531, Iran
~Received 6 October 1997!

By exact computer enumeration we have calculated the designability of proteins in a simple lattice
hydrophobic-polar model for the protein folding problem. We show that if the strength of the nonadditive part
of the interaction potential becomes larger than a critical value, the degree of designability of structures will
depend on the parameters of potential.@S1063-651X~98!01103-9#

PACS number~s!: 87.15.2v, 82.20.Wt, 36.20.Ey, 82.20.Db
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Biologically active proteins fold into a native compa
structure despite the huge number of possible configurat
@1#. In addition to the paradoxical problem of kinetics a
time scales of the folding process, there is another myst
If proteins are made randomly by amino acids, the numbe
all possible such proteins with typical length of 100 is f
larger than the number of proteins which actually occur
nature. Some efforts have been made in order to study
stability of proteins against mutation by searching the t
dimensional configuration space@2,3#. One simple model
used in these studies is the hydrophobic-polar (H-P) model
@4#. In this model there are two types of monomers,H which
refer to hydrophobic monomers, andP for polar ones. Re-
cently Li et al. @5# have looked at this problem in three d
mensions. Calculating the energy of all possible 27-mer
all compact three dimensional configurations, they ha
found that there are a few structures into which a high nu
ber of sequences uniquely fold. These structures were na
‘‘highly designable’’ and the number of sequences wh
fold into each state was named its ‘‘designability.’’ In the
H-P model, they choose the contact energy betweenH and
P monomers by some physical arguments@5,6#. Other sig-
nificant points of their work are~a! only a few percent of
sequences have unique ground state;~b! there is a jump in
energy gap for these highly designable structures. Thus
highly designable structures are more stable against muta
and thermal fluctuation.

Chan and Dill@7# have argued that many of the phenom
ena observed in proteins can be adequately understoo
terms of theH-P model, but according to the work of Pand
et al. @8# the designability of a conformation does depend
the nature of interactions between monomers. Maybe
interaction leads to some highly designable structures,
different interactions yield different patterns.

In this paper we consider aH-P lattice model, with dif-
ferent intermonomer interactions. We can write the gene
form of the interaction potential energy in an arbitrary e
ergy scale as

EPP50, EHP521, EHH5222g, ~1!

whereg gives the energy change due to the mixing of tw
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types of amino acids@9#. The most usual choice ofH-P
model potential corresponds to the limitg@1 @2–4,7#, how-
ever, physical arguments are consistent with a smaller va
for g, for instance,g50.3 was used by Liet al. @5#. They
have calculated the energy of all of 227 sequences in 103 34
compact configurations for a 27-site cube, by a huge e
meration. In particular, it has been suggested that for a
dom mixing of hydrophobic-polar chain it is reasonable
assumeg to be zero@6,9#. In the caseg50, we have an
additive potential. If we letH521, andP50, we can re-
write the potential in the form

Es is j
5s i1s j . ~2!

Following Li et al. @5#, we consider only compact struc
tures of sequences with length 27, occupying all sites o
33333 cube @10#. There are 103 346 compact configur
tions which are not related to each other by rotation a
reflection symmetries.

A protein of lengthN may be shown by anN-component
vector

us&5us i 1
,s i 2

, . . . ,s i N
&, ~3!

wherei n51,2 refers toP andH residues. Thus the numbe
of suchN-component vectors for proteins with length 27
227.

Because of the additive form of the potential, we c
write the energy of a givenus& in any spatial configuration
as

E5(
i 51

27

gis i , ~4!

wheregi ’s are the number of nonsequential neighbors of
i th monomer, or by introducing the neighborhood vec
uG&,

E5^suG&. ~5!

The vectoruG& has 27 components and ati th component
has the number of neighbors of thei th monomer. Due to the
shape ofuG& the type of neighbors is not relevant and all w
3298 © 1998 The American Physical Society
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57 3299STABILITY OF PREFERABLE STRUCTURES FORA . . .
have to do is count the nonsequential neighbors. This g
us an additional symmetry for the energy that is differe
from spatial symmetries.

Due to this additional symmetry the space of all thr
dimensional structures, which has 103 347 members for
compact fully filled structures in a 33333 cube, is divided
into 6291 subspaces, where all members of each subs
have the sameuG&. Let the number of members of a su
space beNd . The range ofNd is from 1 to 96. Figure 1
shows that the frequency of large values ofNd is low. Inter-
estingly there are a lot ofuG& ’s which only point to one
structure.

We have calculated the energy of all 227 us& on all uG&.
We find the degeneracy of ground state in structure sp
There are only a few sequences which have nondegen
ground state; this corresponds to 8.47% of sequences. I
ergy of one sequence is minimized in auG& with Nd greater
than one it has degenerate ground state. According to
definition of designability, such sequences should not
considered. But if we consider all of the sequences wh
have nondegenerate ground state, we get a new picture
designability. This means that we calculate the designab
of all uG& ’s, and not only those withNd51. This is in con-
trast toNs , which had onlyNd51. To recognize this differ-
ence, we show designability of structures byNs8 . Figure 2
shows the distribution ofNs8 . Many of the points in this
figure are related to someuG& ’s with NdÞ1. We shall use
this picture to express the nature of the energy gap in
casegÞ0.

In our enumeration we have calculated the energy of
sequence in all 6291uG& ’s, but in Fig. 2, we show the result
for 3153uG& ’s which are not related to each other by reve
labeling. We cannot reduce the structure space accordin
this symmetry before enumeration. Reverse labeling fo
nonsymmetric sequence gives two different configurati
which may have different energies.

The energy gap for all of the sequences is equal to 2.
find it by enumeration in the first, but there is a simple pro
The number of nonsequential neighbors is related to typ
site. A 33333 cube has 8 corner sites (C), 12 link sites
(L), 6 face sites (F), and one center site (O). C sites have
three neighbors, where two of them are connected by seq
tial links and there is only one nonsequential neighbor. Si
larly L, F, andO sites have two, three, and four nonseque
tial neighbors, respectively. We must add 1 to these num

FIG. 1. Histogram ofNd for members of structure space. It
interesting that there are someG sets withNd51.
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for the two ends of the chain. These sites are divided in t
classes,$C,F% and $L,O%. In a self-avoiding walk in this
cube, we must jump in any step from one set to the oth
The first set has 14 members and the second has 13. Th
walk passes throughC andF sites in odd steps, and throug
L andO sites in even steps. In other words, the odd com
nents of uG& are 1 or 3, and even components are 2 o
~except the first and 27th components which are like e
components!. Thus

uG&5ug1 , . . . ,g27&, ~6!

where

gi5H 1,3, odd i ’s

2,4, even i ’s.
~7!

Therefore, the energy for a sequencesa in a structureGm is

Eam5^sauGm&5 (
i Podd

~gm i21!sa i1 (
i Peven

~gm i22!sa i

1 (
i Podd

sa i12 (
i Peven

sa i . ~8!

By introducing the new binary variablex the above can be
rewritten as

Eam5(
i 51

27

2xm isa i1 (
i Podd

sa i12 (
i Peven

sa i , ~9!

where

xi5H 0, gi51 or 2

1, gi53 or 4.
~10!

The two last terms in Eq.~9! are independent ofuX& or uG&,
thus they result in a constant, which can be ignored wh
comparing energies of a sequence in different configuratio
The first term in Eq.~9! is an integer times two, thus i

FIG. 2. Histogram ofNs8 for additive potential. Note that many
of the points in this diagram correspond to someuG& ’s which point
to more than one spatial configuration.
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3300 57M. R. EJTEHADI et al.
results in a ladder energy spectrum with gaps of 2. Theref
the energy gap for all of the structures is the same, and t
is no difference between low designable and high design
structures.

In the casegÞ0 the potential is nonadditive. In this cas
we can write the energy of theath sequence in themth
spatial configuration as

Eam5^sauGm&2 1
2 g^sauMmusa&, ~11!

wheres andG are the sequence and neighborhood vec
already introduced, andM is the adjacency matrix for this
configuration.

Any uG& hasNd different M matrices. The first term in
Eq. ~11! was calculated in the caseg50, and we need cal
culate only the last part. The energy spectrum for the pre
ous case has a ladder structure with energy gap equal to
this case these split to some sublevels~Fig. 3!.

From the result of the additive potential we know sub
G in the space of all spatial configurations which gives
minimum energy to folding for any configuration. ThisG
subset hasNd members all of which have the sameuG&. For
small g ’s the ground state and the first excited state are
tween theseNd structures, and it is not necessary to calcul
the energy for all 103 346 spatial structures for any
quence, except for sequences where their ground state
structures withNd51. For theNd51 structures the value o
Ns does not change, and it is not necessary to run the
gram, but the first excited states of these sequences a
anotherG subset. Thus to find the energy gap for them
program must be run over all of the 103 346 structures.
have calculated this energy spectrum, and have found thNs
for all 103 346 structures. We show the results for 51 7
configurations which are unrelated by reverse labeling s
metry in Fig. 4. We have found the energy gap for the fi
excited state for all sequences. You can see the diagra
mean of energy gap versusNs in Fig. 5. This figure, in ad-
dition to a jump in energy gap for highly designable stru
tures which was observed by Liet al. @5#, shows that these
highly designable structures are related toG subsets with one
member.

In this enumeration we have calculated the energy sp
trum for all of the sequences which have nondegene

FIG. 3. Energy levels of additive potential split to sublevels
nonadditive potential.
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ground state for the additive potential. We had remov
some of the sequences because of degeneracy of ground
in the additive potential case. It is possible that this deg
eracy will be removed by the nonadditive part of the pote
tial, and some of the sequences have unique ground stat
nonadditive potential. But the energy gap for these sequen
is of order ofg, and if we consider them it causes a shift
horizontal axes to biggerNs and brings down the points
nearer to theg value in vertical direction in Fig. 5. Thes
make this figure more similar to the results of Liet al. @5#. In
their work the energy gaps for low designable structures
of order ofg ~they chooseg50.3) also.

In any compact configuration in a 33333 cube, there are
28 nonsequential neighbor pairs. Thus the contribution of
nonadditive part of potential in energy is less than 28g. Then
if we chooseg, 2

28 the levels are separate~Fig. 3!. Of course
this is a lower estimation forg. The condition that the
ground state of sequences does not change isde02de1,2.
Our enumerations give an upper limit forgc equal to 1,
which breaks this condition. A combinatorial approach giv
a smaller region forgc , 0.25,gc,1 @11#. This shows that
there is a nonzero value forgc , for which, forg less than it,

FIG. 4. Histogram ofNs for nonadditive potential.

FIG. 5. The mean of energy gap~arbitrary units! vs Ns . There is
a jump in energy gap for highly designable structures. All of the
highly designable structures haveNd51.
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57 3301STABILITY OF PREFERABLE STRUCTURES FORA . . .
the ground state structure of sequences does not chang
deedgc distinguishes two phases. Ifg,gc , the degree of
designability of structures is independent ofg, and the
change in value ofg only changes the energy gaps. On t
other hand, forg.gc , the designability of structures be
comes sensitive to the value ofg, and the patterns of highly
designable structures will be changed if the poten
changes. Although we expectgc to beN dependent, its form
is still uncertain to us. The upper limit forgc is independent
of N, but the lower limit does depend onN @11#.
n

d

In-

l

If the designability is the answer to ‘‘why has the natu
selected a small fraction of possible configurations for fold
states?’’ the above discussion shows that this selectio
potential independent ifg,gc , and sensitive to intermono
mer interactions ifg.gc .
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