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Stability of preferable structures for a hydrophobic-polar model of protein folding
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By exact computer enumeration we have calculated the designability of proteins in a simple lattice
hydrophobic-polar model for the protein folding problem. We show that if the strength of the nonadditive part
of the interaction potential becomes larger than a critical value, the degree of designability of structures will
depend on the parameters of potenti&1063-651X98)01103-9

PACS numbe(s): 87.15-v, 82.20.Wt, 36.20.Ey, 82.20.Db

Biologically active proteins fold into a native compact types of amino acid$9]. The most usual choice dfi-P
structure despite the huge number of possible configurationsiodel potential corresponds to the limie=1 [2—4,7], how-
[1]. In addition to the paradoxical problem of kinetics andever, physical arguments are consistent with a smaller value
time scales of the folding process, there is another mystenyor v, for instance,y=0.3 was used by Let al. [5]. They
If proteins are made randomly by amino acids, the number ohave calculated the energy of all of’Zequences in 103 346
all possible such proteins with typical length of 100 is far compact configurations for a 27-site cube, by a huge enu-
larger than the number of proteins which actually occur inmeration. In particular, it has been suggested that for a ran-
nature. Some efforts have been made in order to study th@om mixing of hydrophobic-polar chain it is reasonable to
stability of proteins against mutation by searching the twoassumey to be zero[6,9]. In the casey=0, we have an
dimensional configuration spad,3]. One simple model additive potential. If we leH=—1, andP=0, we can re-
used in these studies is the hydrophobic-potasR) model  \rite the potential in the form
[4]. In this model there are two types of monometswhich
refer to hydrophobic monomers, afifor polar ones. Re- Ego=0i+0]. 2)
cently Li et al. [5] have looked at this problem in three di-
mensions. Calculating the energy of all possible 27-mers in
all compact three dimensional configurations, they hav
found that there are a few structures into which a high nums
ber of sequences uniquely fold. These structures were nam
“highly designable” and the number of sequences which
fold into each state was named its “designability.” In their
H-P model, they choose the contact energy betwdeand
P monomers by some physical argumeffiss]. Other sig-
nificant points of their work aréa) only a few percent of
sequences have unique ground stélbg;there is a jump in |">:|‘Ti1"’iz' T ’UiN>’ )
energy gap for these highly designable structures. Thus the
highly designable structures are more stable against mutatiomherei,= 1,2 refers toP andH residues. Thus the number
and thermal fluctuation. of suchN-component vectors for proteins with length 27 is
Chan and Dill[7] have argued that many of the phenom- 227,
ena observed in proteins can be adequately understood in Because of the additive form of the potential, we can
terms of theH-P model, but according to the work of Pande write the energy of a givefw) in any spatial configuration
et al.[8] the designability of a conformation does depend onas
the nature of interactions between monomers. Maybe any
interaction leads to some highly designable structures, but 27
different interactions yield different patterns. E=E gioi, (4)
In this paper we consider ld-P lattice model, with dif- =1
ferent intermonomer interactions. We can write the general

form of the interaction potential energy in an arbitrary en-Whereg;’s are the number of nonsequential neighbors of the
ergy scale as ith monomer, or by introducing the neighborhood vector

G),

Following Li et al. [5], we consider only compact struc-
ures of sequences with length 27, occupying all sites of a
34<3%3 cube[10]. There are 103 346 compact configura-
ions which are not related to each other by rotation and
reflection symmetries.

A protein of lengthN may be shown by aM-component
vector

Epp=0, Epp=-1, Eyy=—2-v, 1)
E=(0|G). (5)
where vy gives the energy change due to the mixing of two
The vector|G) has 27 components andigh component
has the number of neighbors of thth monomer. Due to the
*Electronic address: reza@netware2.ipm.ac.ir shape of G) the type of neighbors is not relevant and all we
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FIG. 1. Histogram ofN4 for members of structure space. It is 100 1000 10000

interesting that there are sor®sets withNg=1.

N!
have to do is count the nonsequential neighbors. This gives '

us an additional symmetry for the energy that is different gig. 2. Histogram ol for additive potential. Note that many
from spatial symmetries. of the points in this diagram correspond to sof@&’s which point
Due to this additional symmetry the space of all threeto more than one spatial configuration.
dimensional structures, which has 103 347 members for all
compact fully filled structures in aX83x 3 cube, is divided for the two ends of the chain. These sites are divided in two
into 6291 subspaces, where all members of each subspagrisses{C,F} and {L,0}. In a self-avoiding walk in this
have the sam¢G). Let the number of members of a sub- cube, we must jump in any step from one set to the other.
space beNy. The range ofNg is from 1 to 96. Figure 1  The first set has 14 members and the second has 13. Thus a
shows that the frequency of large values\gfis low. Inter-  walk passes throug@ andF sites in odd steps, and through
estingly there are a lot ofG)’s which only point to one L andO sites in even steps. In other words, the odd compo-
structure. nents of|G) are 1 or 3, and even components are 2 or 4
We have calculated the energy of al’2o) on all[G).  (except the first and 27th components which are like even
We find the degeneracy of ground state in structure spacgomponents Thus
There are only a few sequences which have nondegenerate
ground state; this corresponds to 8.47% of sequences. If en- IG)=|91,--.,927), (6)
ergy of one sequence is minimized if@) with Ny greater
than one it has degenerate ground state. According to thehere
definition of designability, such sequences should not be
considered. But if we consider all of the sequences which
have nondegenerate ground state, we get a new picture for
designability. This means that we calculate the designability
of all |G)’s, and not only those witiNg4=1. This is in con- ~ Therefore, the energy for a sequencgin a structureG,, is
trast toNg, which had onlyN4=1. To recognize this differ-
ence, we show designability of structures Ky. Figure 2 _ _ o ) o )
shows the distribution oN,. Many of the points in this Bau=(0elGu) igdd(g’“ 1)0a'+ie§/en(g’“ 2
figure are related to som&)’s with Ng# 1. We shall use
this picture to express the nature of the energy gap in the + D 0ut2 Y o (8)
casey+0. i eodd ieeven
In our enumeration we have calculated the energy of an)é ) ) ) )
sequence in all 629[G)’s, but in Fig. 2, we show the results BY introducing the new binary variabbe the above can be

for 3153|G)’s which are not related to each other by reverse'®Written as

1,3, odd i’'s
12,4, even i’s.

i (7

labeling. We cannot reduce the structure space according to 27
this symmetry before enumeration. Reverse labeling for a

y y : . - 9 : Ea,uzz 2X,u.io-ai+,z O-Cli+2. z O 4i» (9)
nonsymmetric sequence gives two different configurations = i €odd i Eeven

which may have different energies.

The energy gap for all of the sequences is equal to 2. Wghere
find it by enumeration in the first, but there is a simple proof.
The number of nonsequential neighbors is related to type of )0, gi=1or2
site. A 3X3X 3 cube has 8 corner site€), 12 link sites Xi= 1, g;=3 or 4.
(L), 6 face sites ), and one center site)). C sites have
three neighbors, where two of them are connected by sequeihe two last terms in E¢(9) are independent diX) or |G),
tial links and there is only one nonsequential neighbor. Simithus they result in a constant, which can be ignored when
larly L, F, andO sites have two, three, and four nonsequen-comparing energies of a sequence in different configurations.
tial neighbors, respectively. We must add 1 to these numberEhe first term in Eq.(9) is an integer times two, thus it

(10
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FIG. 3. Energy levels of additive potential split to sublevels for N,

nonadditive potential.
FIG. 4. Histogram ofNg for nonadditive potential.

results in a ladder energy spectrum with gaps of 2. Therefore, N )
the energy gap for all of the structures is the same, and thef@ound state for the additive potential. We had removed
is no difference between low designable and high designabl@ome of the sequences because of degeneracy of ground state
structures. in the additive potential case. It is possible that this degen-

In the casey+0 the potential is nonadditive. In this case eracy will be removed by the nonadditive part of the poten-
we can write the energy of theth sequence in the:th tial, and some of the sequences have unique ground state for

spatial configuration as nonadditive potentia!. But the energy gap_for these sequences
is of order ofy, and if we consider them it causes a shift in
Euu=(04lGL) =3 ¥(0.M |0, (11  horizontal axes to biggeNg and brings down the points

nearer to they value in vertical direction in Fig. 5. These
whereo andG are the sequence and neighborhood vectorsnake this figure more similar to the results ofdtial.[5]. In
already introduced, ani is the adjacency matrix for this their work the energy gaps for low designable structures are
configuration. of order of y (they choosey=0.3) also.

Any |G) hasNy different M matrices. The first term in In any compact configuration in 233X 3 cube, there are
Eg. (11) was calculated in the case=0, and we need cal- 28 nonsequential neighbor pairs. Thus the contribution of the
culate only the last part. The energy spectrum for the previnonadditive part of potential in energy is less thary28hen
ous case has a ladder structure with energy gap equal to 2. ihwe choosey< % the levels are separatgig. 3). Of course
this case these split to some sublev@lig. J). this is a lower estimation fory. The condition that the

From the result of the additive potential we know subsetground state of sequences does not changejs- de;<2.

G in the space of all spatial configurations which gives theOur enumerations give an upper limit for, equal to 1,
minimum energy to folding for any configuration. Th&  which breaks this condition. A combinatorial approach gives
subset hadly members all of which have the saff@). For ~ a smaller region fory., 0.25<y.<1 [11]. This shows that
small v's the ground state and the first excited state are bethere is a nonzero value fof,, for which, for y less than it,
tween thesé@\, structures, and it is not necessary to calculate

the energy for all 103 346 spatial structures for any se- 24y

guence, except for sequences where their ground state is in e Zd 1 A

structures wittNg=1. For theNy= 1 structures the value of g iiaC '1 ______________________ -~ 9
Ng does not change, and it is not necessary to run the pro- ﬂ a

gram, but the first excited states of these sequences are in

anotherG subset. Thus to find the energy gap for them the [~ rmmmrrsmmmmemer e 2°Y

program must be run over all of the 103 346 structures. We g
have calculated this energy spectrum, and have foundlijhe ? ....................................................
for all 103 346 structures. We show the results for 51 704
configurations which are unrelated by reverse labeling sym- 8.0 0 a0
metry in Fig. 4. We have found the energy gap for the first L8 B PR e
excited state for all sequences. You can see the diagram of
mean of energy gap versdy in Fig. 5. This figure, in ad- 0
dition to a jump in energy gap for highly designable struc- 1 10 100 1000 10000
tures which was observed by Et al. [5], shows that these N
highly designable structures are related@tgubsets with one :
member. FIG. 5. The mean of energy géarbitrary unit3 vsNg. There is

In this enumeration we have calculated the energy specx jump in energy gap for highly designable structures. All of these
trum for all of the sequences which have nondegeneratiighly designable structures haig=1.
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the ground state structure of sequences does not change. In-If the designability is the answer to “why has the nature
deedy, distinguishes two phases. #<y., the degree of selected a small fraction of possible configurations for folded
designability of structures is independent @f and the states?” the above discussion shows that this selection is
change in value ofy only changes the energy gaps. On thepotential independent < vy., and sensitive to intermono-
other hand, fory>1y., the designability of structures be- mer interactions ify> ..

comes sensitive to the value gf and the patterns of highly

designable structures will be changed if the potential We would like to thank J. Davoudi for motivating the
changes. Although we expegt to beN dependent, its form  work, R. Golestanian and S. Saber for helpful comments, and
is still uncertain to us. The upper limit foy. is independent S. Rouhani for helpful comments throughout the work and
of N, but the lower limit does depend o [11]. for reading the manuscript.
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